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ABSTRACT 

We estimate the rate of covergence to functions in the spaces L p 10,1] and 
C[0,1] by polynomial of the form Eta~x t, where the ;t's are positive real 
numbers and 0. 

Introduction 

We will use the following notation: 

A =  {1,x~', . . . ,x a~} 0 < 2 ~ < 2 2 < . . . < i ~  

(fo' I[/[I. = If(t)l 

I l f l lo  = sup If(t)l 
t ~ [ 0 , 1 ]  

dp( f ;A)  = inf [ I f -  PAI[p. 
P A e C A ]  

Our goal in this paper is to determine the degree of  approximation possible to 

functions in the sl~aces LPl-0,1] and C[0, 1] by "polynomials" PA in the span 

of  A. More specifically, we seek the approximation index lp, that is, the smallest 

possible number lip(A) such that for any f s  L p, 

dl,(f  ; A) < 2 Wp(f ; 111 ). 

Here Wp denotes the L p modulus of  continuity of  J. (To simplify notation, we use 

the symbol L ~ to denote the space of  continuous functions.) 

Recent research ([1], [6], [7]) has yielded the following results: 

(A) I f  2 < p < oo and Am >= 2m, m = 1, 2,.." n, Ip is equivalent (equal within 

a constant factor) to 
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(B) If  p = 2 or p = oo, Ip is equivalent to max [ Bp(z)/z 1, where Bp(z) is the 
Rez=I 

Blaschke product with zeros at Am + lip. 

Note that (A) gives a handy formula for Ip in the L p spaces, 2 < p < oo under 

the growth condition 2m > 2m. (B) gives the complete answer in the special 

cases p = 2 or p = ~ .  Furthermore, the rather complicated expression in (B) 

has a simple equivalent atso in the "nonseparated" cases. That is, setting 

ep = max [Bp(z)/zl, we have 
R e z = l  

(~m)- �89 ~ ~ C1 (m~ Am)-")~ ~ (1) C2 Am = e r __ for each 1 < p < ~ ,  

as long as Am+ i - Am < 2. See [-7"]. 

Our conjecture is that ep is the correct formula (up to a constant factor) for 

the approximation index in all the LP-spaces. The results we prove will show that 

it serves as an upper bound under very general conditions and also serves as a 

lower bound for 2 < p < oo and under the added hypothesis 2 m > 2m also for 

1 < p < 2. For future reference, then, we record the equivalent formula for ep 

also in the "separated" case. There, a comparison of Theorems (A) and (B) shows 

(2, C z e x p ( - 2  m~ 2 - ~ ) < e , < C ~ e x p ( - 2  ~ ~ )  

as long as Am > 2m for all m. In fact (2) holds for each 1 < p < oo. 

1. Upper bounds 

THEOREM 1. There exists a constant A > 0 such that for any f e LP[0, 13, 

there exists PA with ]I f -PA]Ip < 2 Wp(f; Aep) if any one of the following 

conditions is satisfied: 

(a) 2 < p < ~  

(b) 1 < p < 2 ,  2 m >-- m for all m 

(c) l < p  < 2 ,  Am+ 1 - A  m <  l f o r a l l  m. 

Since Am+ 1 -- A m > 1 for all m implies 2,n >__ m for all m, cases (b) and (c) form 

a pair of  "separated" and "nonseparated" cases. 

Our method of  proof will consist of first approximating by an ordinary N-th 

degree polynomial and then reapproximating the monomials by A-polynomials. 
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This is the method introduced by Von Golitschek [9] and Leviatan [5] 

recently used by Newman [6]. We will need the following lemmas" 

LEMMA 1. Suppose f e L P [ -  1,1] with lift llp < l. Then there 

N-th degree polynomial Pu(x) such that 

(3) 

PROOF. 
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and 

exists an 

I I f  - 11, -<-- Ax[N 
while 

IP;,I =< A~N'/~. 
For even periodic LP-functions g(O) on [ - n ,  rc] with Ilg'lb the 

even trigonometric approximation TN(O) given by the Jackson kernel satisfies 

IIg- r~ll, -<- cI/N while Iz;l = c 2 N ' " .  See [4, p. 2]. For f e L P [ - � 8 9 1 8 9  we 

obtain (3) by making the usual transformation x = cos O, g(0) = f (cos  0). Finally, 

a second change of  variables shows that (3) holds for the interval [ - t, 1], as 

desired. 

LEMMA 2. For any p > 1 and k >_ 1, IB,(k) l =< k~,.k 

PROOF. The proof  is given in [6] under the hypothesis that k is a positive 

integer, but the proof  is identical as long as k > 1. 

LEMMA 3. In each of the cases (a), (b) and (c) and for any positive integer k, 

there exists a A-polynomial P^ such that 

l i xk -pa(x ) l ip  < Bk+t(k + 1) k*'oa+`'` ' '  

B an absolute positive constant. 

PROOF OF LEMMA 3. Here we must consider each case separately: 

Casea.  2 < p < c w . =  = 

We begin by noting that the L p distance of  x k to A is given by 

sup floXkg(x)dx 
where the supremum is taken over all functions g ~ L q [0, 1] of  norm one and s.t. 

.[~x~'~g(x)dx = 0 for all m. Given such a function g(x), we set 

fo' F(z) = x z- lip g(x)dx 

and note that F(z) is an analytic function in the right half-plane with zeros at the 

points 2,. + l/p, so that 
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F(z) = B,(z) G(z). 

To estimate G(z), we rewrite F(z) as an integral over the half-line 

fo" F(z) = e-%-' lqg(e-t)dt  = Bv(z)G(z ). 

Noting then that [1 e-q'g(e -') IIq on [0, oo) = 1 and I B(iy)l = 1 for all y, we can 

apply Young's inequality [10, p. 316] to conclude 

f_~  iG(iY)l" dy < 2rc. 

Finally, since G(z) is analytic in the right half-plane 

k 
f G(z)dz/(z - k)(z + k) G ( k )  = ~-i , i 

where I is the imaginary axis and by HSlder's inequality 

l a (k) l  N (2~)'lV(klrc) f Idzlllz-kPl z + kiq) llq 

and a direct estimate shows 

I G(k)[ < (2/k) '/'. 

Recalling that the L v distance of x k to A is bounded by supp F(k + 1/p), we have 

for some PA, 

II x k -  PAll, =< IBI,( k + 1/p)G(k + l/p) I __< 2]N,(k + I/p)] 

and an application of Lemma 2 completes the proof. 

Case b. 1 <= p < 2, 2 m > m. 

Our proof here rests on the following inequality derived in [1]. (Interestingly, 

it was used there to obtain a lower bound in the conjugate spaces.) 

DEFINITION. Suppose f (z)  = f~  e-'Zf(t)dt, 

il F(z)I1,,. = l lso) i l ,  on [0, oo]. 

PROPOSITION. 

II B(z)/(z + k)I]A. --< 3 for 1 S P S 2. 

The proposition is proven in [1, p. 452] for 2m > 2m but is evidently true for 

2,, > 5m, where 6 > 0 is arbitrary but fixed. While the proof there involves 

k = 1, the arguments are quite general. 

Now, by a partial fraction decomposition 
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Thus 
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B(z) / ( z  § k) = B(  - k ) / (z  § k) § ~,Ax/(z  -I" 2). 

fO ~ 
B(z) / ( z  + k) = B(  - k) e-tZ(e -tk - Z C x e - t X ) d t  

so that according to the above proposition, 
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II e-'~ •Cxe-'Xl] [0, oo] N 31B(-k)1-1 31B(k) I - p o n  = . 

The standard transformation e - t  = x shows then that 

or, equivalently, 

[I x ~ - . ,  - ~C~x~-r o~ Co, q ~ 31B(k)J 

]Ix k -  PA(X)lip < 3lBp(k + l/p)] 

so that again by Lemma 2, the proof  is complete. 

Case c. 1 < p < 2 ,  ;tin+ 1 - 2  m <  1. 

Our proof here rests on the ability to approximate x k § 1 in the uniform norm 

and the explicit representation for ep given in (1). 

We begin by considering, for any k, the set of  monomials {x"~}, ;where 

#m = (k + 1/k)2m. I f  we set 

Bp*(z) 1 z - (l~m + 1/p) and r/p = max 
B*(z )  = I'Im z -+ (l~ z + i /p )  Re z =l z 

we have by Case (a) 

II ,~§ - zc . t" ' l l~  z 2(g + 1 ) k + l t / ~  +1  

for some choice of  coefficients Co, C~, . . . ,Cn.  Furthermore since [If(t~)l[oo 

= [If(t) I[~ for any 0~ > O, we can make the change of  variables t k +1 = x k and 

conclude 

II x ~ -  XC.x~" lip -<- II x~- Zc~x~'ll~ --- 2(k § 1)  k+ l ~ / k + ,  

for all p > 1. 

Finally, since both of  the sets {x x"} and {x urn} have exponents which are sepa- 

rated by less than two, we can apply (1) to conclude 

ep ~ nl(~Am) -~ ~ B2(E//m) -~ ~ Bar/~ o 

so that 
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II x~- ZCmxa"ll, ~ Bk§ 1( k + 1)k+14+1 

and the proof is complete. 

PROOF OF TrlEORs 1. Let f be such that Ilrlls--< 1; we will show the 

existence of  a polynomial PA such that l i f -  e~ I1 ~ a e~ (the reduction to this 

special case is contained e.g. in Eli). 

Let PN(X) be the N-th degree approximator guaranteed by Lemma 1 and 

recall that 

I Q~I < 1 ~  I Q~)(o)l < N k- t  E8, p. 226]. (4) 

Thus if 

Israel J. Math., 

and the proof  is complete. 

P-~MAR~:. As we mentioned in the proof  of  Case (b) the methods used could be 

applied as well under the somewhat weaker condition 2 m >= 6m, 6 > 0. Nevertheless, 

not all cases are covered by Theorem 1 and one may wonder whether under some 

unusual conditions Ip may actually be much larger then %. In the following sense 

this is impossible. 

Proceeding as in the proof  of  Case (a), one could show using rough estimates 

that for any p >_- 1 and positive integer k, 

Ilx k -  P^(x) II s __< A(k + 1)k+lek+llP[lOgSp[ I/s 

for some PA" This result may then be used as in the proof  of  Theorem 1 to show 
that 

I s < A% [loges] lip 

in all LP-spaces, and with no restrictions on 21, 22,"-,  2..  

PN(x) = Zakx k, lag I < AzNk- l+l /Plk! .  

Finally taking PA(X) = ~,akRk(x) where R, is the best A-approximator to x k we 

have by Lemma 3, 

I l l -  PA IIs :< 11 I -  PN 1Is + I1 Ply - PA Ils 
A1 iv Nk-l+llsAk(k _[_ l)k+l~k+l/p 

v s __< + E  
N k=l k! 

1 
Choosing N - 

6A 3 �9 e s 

I ls-  P^ II, s A~ ,  + e sA, ~. k.  - -  
4 = 1  
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2. Approximation to di~erentiable functions 

A second theorem of Jackson [4, p. 12] states that for any f E C 1 [ 0, 1] there 

exists an N-th degree polynomial PN such that 

[ I f -  PN lifo < AW(f';1/N)/N. 

Stated equivalently in terms of certain basic functions f ~ C 1 [0, 1] with if"[ < 1, 

the theorem asserts that there exists PN such that i l f -  PN 11 <= A/N2" Corres- 

ponding results hold for functions in CJ[O, 1], (1/N 2 is replaced by I/N J+ 1), and 

in all the LP-spaces as well. We wish to generalize these theorems in the direction 

of  Muntz-approximation that is, we will prove 

THEOREM 2. Let eg be as before and assume the hypothesis of Theorem 1 is 

satisfied. Furthermore, supplement A to include the monomials x, x2,...,x ~. 

Then for any j-times differentiable f ~ LP[O, 1], there exists P A such that 

IIf - P^ [I, --< Ae~Wp(f;e~). 

REMARKS. To simplify notation, we will deal with the case j = 1 although the 

method generalizes easily. Also, we will confine ourselves to differentiable functions 

such that If" !, ---- 1. w e  then seek to demonstrate the existence of a function PA 

such that 

I I f -  P A II, s A~ 
(the reduction to this special case and a proof under the hypotheses 2m > 2m, 

p >= 2 are contained in [1]). 

PROOF OF THEOILEIVI 2. We first use Jackson's method to approximate f by an 

N-th degree polynomial. Since If" l, =< 1, by (3) we can find QN s.t. 

Ilf'-O~ II, • I/N with I o;I z N',.. 
But then N(f  - ON) has a bounded derivative (L p) and we can find RN S.t. 

1 II N(f-  0 . . )  - R , ,  II. ---- ~ with i R~ I< N TM. 

Taking Ply = QN + RNiN, we have 

ILf-P.II-<- 11N2, 
Also if P•(x) =~akx k, lakl < ANk-2+~/P/k! for k > 2. 

This follows from the two inequalities I Q~ l < N~/P and I R~ / N] < N -~ + ~/p 

and (4). 
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Once again, reapproximating PN(x) by PA(X) = ~,akQk(X ) where Qk is the best 

A-approximator to x k, we obtain by Lemma 3 

II f -  e,< II < II f -  e,+ II + II P,'~ - P ^  II 

<= A/N 2 + ~ Nk-Z+ilPBk+l(k"4-1)k+igpt+i/P/k..l 
k=2 

Choosing N = 1/6 B% as before we obtain 

liT-P^II--- c q  
and the proof is complete. 

3. Lower Bounds 

THEOREM 3. There exists a function f~LP[0 ,1]  such that dp(f,A)-> A 

Wp(f ; ep) where A is an absolute positive constant (independent of f and A) 

if either 2 <= p < oo or 1 <__ p < 2 and ~'k >= 2k for all k. 

PROOF. First assume 2 __< p __< oo. Our proof is based on some ideas and 

results from [1, 6]. Let Ip = supllI,ii p:_< 1 dp(J', A), then Ip has a useful representation 

(5) i ,  = sup II c IIJII g IIq where g • P^ and G(x) - -  g(t)dt. 
g e Lq[O, 11 

Given g ~ L q [0, 1] such that 9 1 P^ set 

F(z) = t"- 1/P#(t)dt. 

Then F(z) is analytic for Re z > 0 and vanishes for z = 2i + 1/p i = O, 1,..., n. 

Also integration by parts yields 

F ( z ) =  - ( z -  1 )  fo'tZ_(1/,)_ 1G(t)dt 

so that 

F(z + 1) fo 1 z + (l/q) = - t=-(t/P)G(t)dt" 

Following [1, p. 451] we make a change of variable to obtain 

F(z) = e-Zth(t)dt 

and 
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fo ~ 
F(z + 1) = e-"'H(t)dt 
z + (l/q) 

where h(t) = 9(e-')e -'/q and H(t) = G(e-')e -'/q so that 11 h llq on [0, oo) = II g IIq 

on [0,1] and I[ H IIq on [0, oo) = II G [Iq on [0, 1]. Since 

F(iy + 1) 
i y+(1 /q )  

is the Fourier transform of H(t) it follows byYoung's inequality that 

F(iy + 1) < (2i_[)l/,]lHllq. 
(6) iy + (l/q) = 

Now F(z) may be factorized into F(z) = B~(z)A(z) where Bp(z) is the Blaschke 

product vanishing at z = 2i + l ip i = O, 1, ..., n and A(z) is analytic in the right 

half-plane. Hence 

F(iy + 1) p= 
(7) iy + (l/q) 

where 

L(y) = 1 r] 
1 i=0 y2 -t- q-~- 

y 2 +  2 ~ - 1 +  

y2 + ( 2 , +  1 + 1 )  ~' 

and we will use this to estimate 

F(iy + 1) p 
iy + (l/q) 

from below. We do this in much the same way as [7]. Let Yi = 2i + l ip 

Then for y > 0 
i=0 , . - . ,n .  

L(y) = i=o y 2 + ( y ,  1)2 y 2 + ( 7 i + 1 )  2 - 1 y2 + ~  

=8y  
i=0 

7~ 2y 
1 [ya + ( 7 , -  1/2] [y2 + (7~ + 1123 y2 + -~ 

> 2y > _ q. 
~-- l~--- 

y2|q_ q-2 
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Let t >- 0 be the point  where L(y)  assumes its maximum and put  M = L(t)  1/2. 

Then integrating (8) f rom t to t + u, u > 0, we obtain 

l o ? ( t  + u) M2 >= - q u  or L( t  + u) > M2e -~' 

for  all u > 0. In particular 

(9) L(y)  >_ M2e 1 ,  

N o w  choose 

t<y<t+l.= = 

4z2s2Bp(z) 
F ( z )  = 

(z + s)Z(z + 1 - it) 

where s = ~/1 + t z. This function has been used by Newman  [6] for the case 

p = oo. For  this F(z)  

F r o m  (7) and (9) 

F(iy + 1) 

7y u (~I~5 I/, 
> 

A(z)  = 
4Z2S 2 

(z + s)2(z + 1 - it)" 

( f t+ l (  [2S2 \p ~l]p 
Me_q~ z 4 [ 1 + iy 

.., I~ + , ,  + ,J'l~ + , ,  + 1 - i t l )  +) 

= ~ : : (  ('+7 
J, k((a 

N o w  f o r t = < y = <  t + l  

(1 + y2)s2 

[(1 + sy + y~]~ 

Therefore 

F(iy + 1) 

4(1 + y2)2s4 ~p/2 ~l/p 
+ s) z + y2),(  4 + (y _ t)2) ~ dy) . 

> 

(1 + y2)(1 + t 2) 
2 2 I(L+ )+,21 

(1 + t2) 2 

[ ]' 1 + 2 ~/-1 2t- t 2 + 1 + t 2 + (1 + t) 2 

(1 + t2) 2 1 

[6(1 + t2)]  2 = 3-6' 

->- e-q/2 [4 + (y - t)2] p/2] 

Me -q/2 dy 1/p 

18 (fo 
= C M .  
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Evidently M is equivalent to ep thus (6) and (10) imply 

(11) II n IIq ->- K.,. 
We now find an absolute upper bound for I Ihb  1 < q < 2 and o n c e  this is done 

our theorem follows by (5) and (11). 

To this end we introduce the following notation of  Bak and Newman [1, p. 451]. 

Denote by {lfIIA~ the L ~ -norm of the inverse Fourier transform of f. Newman 

[6, (14)] proved that 

(12) I1 F(/y) II,, -5_ 6. 

Also by Parseval's equality and Newman [6, (12)] 

(13) II F(iy) lla~ = ~/2-n II F(iy)112 

x/2-~ f~oo [F(iy)[ZdYX/Z 

Combining (12) and (13) it follows that l[ F(iy)[[aq is bounded by an absolute 

constant for all 1 < q < 2 and this completes the proof  for 2 < p < oo. Thus let 

us assume 1 = < p < 2. 

Our proof will be based on two lemmas. The first one assures us that the 

monomial x*- ~/p can be approximated (L p) to within a constant times ep by the 

derivative of  some A-polynomial. 

LEMMA 1. Let A' = {x"',x "~,...,x u ' - ' }  where #k -- 2~+, - 1 then 

dp(xl-1/P,A ') < Ale~. 

PROOF OF LEMMA 1. According to Lemma 3b of  Theorem 1, 

n--1 f i  d,(x'-~,,,A') _< 17 "~- 1 + 1/v [ = ~ -  2 + lip 
k =~ + 1 21- 1/p 2 2g + 1/p 

< exp - 2  ~ < A ~- k ~- 18p 
k = 3  

by the left-hand inequality in (2). 

LEM~A 2. d~(x2-1/P;A) ~ a28p 2. 

PROOF OF LEMMA 2. Again, we will use the fact that 
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fo dr(f;  A) => I dp(x)f(x)dx I 

for any ~b E L. such that ~b _1_ A and 1[ q~ [[q < 1. 

Choose ~ so that 

fo zBp(z + l/p) ck(x)xZdx - 5(z + 2) 3 

Since By(2 + (l/p)) = 0, q~ _I_A. We wish to show I[ ~b [[q =< 1. Note, then, that if we 

make the transformation x = e -t  and set z = iy - 1/p, we have 

so that 

fo ~?(e_t)e_t/qe_UYdt = (iy - 1/p)Bp(iy) 
5(iy + 2 - l/p) 3 

and by Young's  inequality 

[[ ~(e-t)e-t/a [Iq on [0, oo] < 1. 

Returning to the unit interval, we have shown that ]l ~ ]]q =< 1. Thus 

( 2 -  1 ) B y ( 2  ) 

fo dp(x 2-1/V;A ) > d?(x)x 2-1/Vdx = 

The proof  follows then by noting that by the hypothesis on {2k} 

the latter inequality following from the right-hand inequality in (2). 

PROOF OF THOEREM 3. We will exhibit a function f such that 

I[f' 1, while dp( f ;A)  > Aep. 

Choose al, a2, "", a, so that 2akx ~k-x is the best A' approximation to x t -  x/p and 
let 

[X2_I/p_ ~ ( 2 -  1]p)ak xa~] ]2A~ev" f(x) 
I I 

By Lemma 1, 

~oo (iy_-- 1]p)Bp(iy)e uy d 
~P(e-t)e-t/q = J-oo 5(iy + 2 - (l/p)) a y 
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ils' II, 1 

while on the other hand  

d p ( f ; A )  = dp ~ ; A  ~ 5, 

by L e m m a  2, and the p r o o f  is complete.  
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