GENERALIZED POLYNOMIAL APPROXIMATION

BY

J. BAK, D. LEVIATAN, D. J. NEWMAN AND J. TZIMBALARIO

ABSTRACT

We estimate the rate of covergence to functions in the spaces $L^p[0,1]$ and C[0,1] by polynomial of the form $\Sigma_{\lambda}a_{\lambda}x^{\lambda}$, where the λ 's are positive real numbers and 0.

Introduction

We will use the following notation:

$$\Lambda = \{1, x^{\lambda_1}, \dots, x^{\lambda_n}\} \quad 0 < \lambda_1 < \lambda_2 < \dots < \lambda_n$$
$$\|f\|_p = \left(\int_0^1 |f(t)|^p dt\right)^{1/p}$$
$$\|f\|_{\infty} = \sup_{\substack{t \in [0,1]\\ P_A \in [\Lambda]}} \|f(t)\|$$

Our goal in this paper is to determine the degree of approximation possible to functions in the spaces $L^p[0,1]$ and C[0,1] by "polynomials" P_{Λ} in the span of Λ . More specifically, we seek the approximation index I_p , that is, the smallest possible number $\eta_p(\Lambda)$ such that for any $f \in L^p$,

$$d_p(f;\Lambda) \leq 2W_p(f;\eta_p).$$

Here W_p denotes the L^p modulus of continuity of f. (To simplify notation, we use the symbol L^{∞} to denote the space of continuous functions.)

Recent research ([1], [6], [7]) has yielded the following results:

(A) If $2 \le p \le \infty$ and $\lambda_m \ge 2m$, $m = 1, 2, \dots n$, I_p is equivalent (equal within a constant factor) to

Received January 22, 1973

$$\exp\left(-2\sum_{m}\frac{1}{\lambda_{m}}\right).$$

(B) If p = 2 or $p = \infty$, I_p is equivalent to $\max_{\text{Re}\,z=1} |B_p(z)/z|$, where $B_p(z)$ is the Blaschke product with zeros at $\lambda_m + 1/p$.

Note that (A) gives a handy formula for I_p in the L^p spaces, $2 \le p \le \infty$ under the growth condition $\lambda_m \ge 2m$. (B) gives the complete answer in the special cases p = 2 or $p = \infty$. Furthermore, the rather complicated expression in (B) has a simple equivalent also in the "nonseparated" cases. That is, setting $\varepsilon_p = \max_{\text{Re}\,z=1} |B_p(z)/z|$, we have

(1)
$$C_2\left(\sum_m \lambda_m\right)^{-\frac{1}{2}} \leq \varepsilon_p \leq C_1\left(\sum_m \lambda_m\right)^{-\frac{1}{2}}, \quad \text{for each } 1 \leq p \leq \infty,$$

as long as $\lambda_{m+1} - \lambda_m \leq 2$. See [7].

Our conjecture is that ε_p is the correct formula (up to a constant factor) for the approximation index in all the L^p -spaces. The results we prove will show that it serves as an upper bound under very general conditions and also serves as a lower bound for $2 \leq p \leq \infty$ and under the added hypothesis $\lambda_m \geq 2m$ also for $1 \leq p < 2$. For future reference, then, we record the equivalent formula for ε_p also in the "separated" case. There, a comparison of Theorems (A) and (B) shows

(2)
$$C_2 \exp\left(-2\sum_m \frac{1}{\lambda_m}\right) \leq \varepsilon_p \leq C_1 \exp\left(-2\sum_m \frac{1}{\lambda_m}\right)$$

as long as $\lambda_m \ge 2m$ for all m. In fact (2) holds for each $1 \le p \le \infty$.

1. Upper bounds

THEOREM 1. There exists a constant A > 0 such that for any $f \in L^p[0, 1]$, there exists P_{Λ} with $||f - P_{\Lambda}||_p < 2 W_p(f; A\varepsilon_p)$ if any one of the following conditions is satisfied:

- (a) $2 \leq p \leq \infty$
- (b) $1 \leq p < 2, \lambda_m \geq m$ for all m
- (c) $1 \leq p < 2$, $\lambda_{m+1} \lambda_m \leq 1$ for all m.

Since $\lambda_{m+1} - \lambda_m \ge 1$ for all *m* implies $\lambda_m \ge m$ for all *m*, cases (b) and (c) form a pair of "separated" and "nonseparated" cases.

Our method of proof will consist of first approximating by an ordinary N-th degree polynomial and then reapproximating the monomials by Λ -polynomials.

This is the method introduced by Von Golitschek [9] and Leviatan [5] and recently used by Newman [6]. We will need the following lemmas:

LEMMA 1. Suppose $f \in L^p[-1,1]$ with $||f'||_p \leq 1$. Then there exists an N-th degree polynomial $P_N(x)$ such that

(3)
$$\begin{aligned} \|f - P_N\|_p &\leq A_1/N \\ \|P'_N\| &\leq A_2 N^{1/p}. \end{aligned}$$

PROOF. For even periodic L^p-functions $g(\theta)$ on $[-\pi, \pi]$ with $||g'||_p \leq 1$, the even trigonometric approximation $T_N(\theta)$ given by the Jackson kernel satisfies $||g - T_N||_p \leq C_1/N$ while $|T'_N| \leq C_2 N^{1/p}$. See [4, p. 2]. For $f \in L^p[-\frac{1}{2}, \frac{1}{2}]$, we obtain (3) by making the usual transformation $x = \cos \theta$, $g(\theta) = f(\cos \theta)$. Finally, a second change of variables shows that (3) holds for the interval [-1, 1], as desired.

LEMMA 2. For any
$$p \ge 1$$
 and $k \ge 1$, $|B_p(k)| \le k^k \varepsilon_p^k$.

PROOF. The proof is given in [6] under the hypothesis that k is a positive integer, but the proof is identical as long as $k \ge 1$.

LEMMA 3. In each of the cases (a), (b) and (c) and for any positive integer k, there exists a Λ -polynomial P_{Λ} such that

 $||x^{k} - P_{\Lambda}(x)||_{p} \leq B^{k+1}(k+1)^{k+1}\varepsilon_{p}^{k+(1/p)},$

B an absolute positive constant.

PROOF OF LEMMA 3. Here we must consider each case separately:

Case a. $2 \leq p \leq \infty$.

We begin by noting that the L^p distance of x^k to Λ is given by

$$\sup \int_0^1 x^k g(x) dx$$

where the supremum is taken over all functions $g \in L^q$ [0,1] of norm one and s.t. $\int_0^1 x^{\lambda m} g(x) dx = 0$ for all *m*. Given such a function g(x), we set

$$F(z) = \int_0^1 x^{z-1/p} g(x) dx$$

and note that F(z) is an analytic function in the right half-plane with zeros at the points $\lambda_m + 1/p$, so that

J. BAK ET AL.

$$F(z) = B_p(z) G(z).$$

To estimate G(z), we rewrite F(z) as an integral over the half-line

$$F(z) = \int_0^\infty e^{-tz} e^{-t/q} g(e^{-t}) dt = B_p(z) G(z).$$

Noting then that $||e^{-t/q}g(e^{-t})||_q$ on $[0, \infty) = 1$ and |B(iy)| = 1 for all y, we can apply Young's inequality [10, p. 316] to conclude

$$\int_{-\infty}^{\infty} |G(iy)|^p \, dy \leq 2\pi.$$

Finally, since G(z) is analytic in the right half-plane

$$G(k) = \frac{k}{\pi i} \int_{I} G(z) dz / (z-k)(z+k)$$

where I is the imaginary axis and by Hölder's inequality

$$|G(k)| \leq (2\pi)^{1/p}(k/\pi) \int_{I} |dz|/|z-k|^{q}|z+k|^{q})^{1/q}$$

and a direct estimate shows

$$\left| G(k) \right| \leq \left(2/k \right)^{1/p}.$$

Recalling that the L^p distance of x^k to Λ is bounded by $\sup_F F(k + 1/p)$, we have for some P_{Λ} ,

$$\| x^{k} - P_{\Lambda} \|_{p} \leq |B_{p}(k+1/p)G(k+1/p)| \leq 2 |B_{p}(k+1/p)|$$

and an application of Lemma 2 completes the proof.

Case b. $1 \leq p < 2, \lambda_m \geq m$.

Our proof here rests on the following inequality derived in [1]. (Interestingly, it was used there to obtain a *lower* bound in the conjugate spaces.)

DEFINITION. Suppose $F(z) = \int_0^\infty e^{-tz} f(t) dt$,

$$||F(z)||_{A_n} = ||f(t)||_p \text{ on } [0,\infty].$$

PROPOSITION.

$$\|B(z)/(z+k)\|_{Ap} \leq 3 \text{ for } 1 \leq p \leq 2.$$

The proposition is proven in [1, p. 452] for $\lambda_m \ge 2m$ but is evidently true for $\lambda_m \ge \delta m$, where $\delta > 0$ is arbitrary but fixed. While the proof there involves k = 1, the arguments are quite general.

Now, by a partial fraction decomposition

340

Vol. 15, 1973 GENERALIZED POLYNOMIAL APPROXIMATION

$$B(z)/(z+k) = B(-k)/(z+k) + \sum A_{\lambda}/(z+\lambda).$$

Thus

$$B(z)/(z+k) = B(-k) \int_0^\infty e^{-tz} (e^{-tk} - \sum C_{\lambda} e^{-t\lambda}) dt$$

so that according to the above proposition,

$$\| e^{-tk} - \sum C_{\lambda} e^{-t\lambda} \|_{p}$$
 on $[0, \infty] \leq 3 |B(-k)|^{-1} = 3 |B(k)|$.

The standard transformation $e^{-t} = x$ shows then that

$$||x^{k-1/p} - \sum C_{\lambda} x^{\lambda-(1/p)}||_{p}$$
 on $[0,1] \leq 3|B(k)|$

or, equivalently,

$$\|x^k - P_{\Lambda}(x)\|_p \leq 3|B_p(k+1/p)|$$

so that again by Lemma 2, the proof is complete.

Case c. $1 \leq p < 2, \lambda_{m+1} - \lambda_m \leq 1.$

Our proof here rests on the ability to approximate x^{k+1} in the uniform norm and the explicit representation for ε_p given in (1).

We begin by considering, for any k, the set of monomials $\{x^{\mu_m}\}$, where $\mu_m = (k + 1/k)\lambda_m$. If we set

$$B_p^*(z) = \prod_m \frac{z - (\mu_m + 1/p)}{z + (\mu_m + 1/p)} \text{ and } \eta_p = \max_{\text{Re } z = 1} \left| \frac{B_p^*(z)}{z} \right|,$$

we have by Case (a)

$$\| t^{k+1} - \sum C_m t^{\mu_m} \|_{\infty} \leq 2(k+1)^{k+1} \eta_{\infty}^{k+1}$$

for some choice of coefficients C_0, C_1, \dots, C_n . Furthermore since $||f(t^{\alpha})||_{\infty}$ = $||f(t)||_{\infty}$ for any $\alpha > 0$, we can make the change of variables $t^{k+1} = x^k$ and conclude

$$\|x^{k} - \Sigma C_{m} x^{\lambda_{m}}\|_{p} \leq \|x^{k} - \Sigma C_{m} x^{\lambda_{m}}\|_{\infty} \leq 2(k+1)^{k+1} \eta_{\infty}^{k+1}$$

for all $p \geq 1$.

Finally, since both of the sets $\{x^{\lambda m}\}$ and $\{x^{\mu m}\}$ have exponents which are separated by less than two, we can apply (1) to conclude

$$\varepsilon_p \geq B_1(\Sigma\lambda_m)^{-\frac{1}{2}} \geq B_2(\Sigma\mu_m)^{-\frac{1}{2}} \geq B_3\eta_{\infty}$$

so that

$$\|x^k - \sum C_m x^{\lambda_m}\|_p \leq B^{k+1}(k+1)^{k+1} \varepsilon_p^{k+1}$$

and the proof is complete.

PROOF OF THEOREM 1. Let f be such that $||f'||_p \leq 1$; we will show the existence of a polynomial P_{Λ} such that $||f - P_{\Lambda}|| \leq A \cdot \varepsilon_p$ (the reduction to this special case is contained e.g. in [1]).

Let $P_N(x)$ be the N-th degree approximator guaranteed by Lemma 1 and recall that

(4)
$$|Q'_N| \leq 1 \Rightarrow |Q'^{(k)}(0)| \leq N^{k-1}$$
 [8, p. 226].

Thus if

$$P_N(x) = \sum a_k x^k, |a_k| \le A_2 N^{k-1+1/p}/k!.$$

Finally taking $P_{\Lambda}(x) = \sum a_k R_k(x)$ where R_k is the best A-approximator to x^k we have by Lemma 3,

$$\|f - P_{\Lambda}\|_{p} \leq \|f - P_{N}\|_{p} + \|P_{N} - P_{\Lambda}\|_{p}$$
$$\leq \frac{A_{1}}{N} + \sum_{k=1}^{N} \frac{N^{k-1+1/p} A_{3}^{k} (k+1)^{k+1} \varepsilon_{p}^{k+1/p}}{k!}.$$

Choosing $N = \frac{1}{6A_3 \cdot \varepsilon_p}$,

$$\|f - P_{\Lambda}\|_{p} \leq A_{4}\varepsilon_{p} + \varepsilon_{p}A_{5}\sum_{k=1}^{\infty} k \cdot \left(\frac{2e}{6}\right)^{k}$$

and the proof is complete.

REMARK. As we mentioned in the proof of Case (b) the methods used could be applied as well under the somewhat weaker condition $\lambda_m \ge \delta m$, $\delta > 0$. Nevertheless, not all cases are covered by Theorem 1 and one may wonder whether under some unusual conditions I_p may actually be much larger then ε_p . In the following sense this is impossible.

Proceeding as in the proof of Case (a), one could show using rough estimates that for any $p \ge 1$ and positive integer k,

$$\left\|x^{k}-P_{\Lambda}(x)\right\|_{p} \leq A(k+1)^{k+1}\varepsilon_{p}^{k+1/p}\left|\log\varepsilon_{p}\right|^{1/p}$$

for some P_{Λ} . This result may then be used as in the proof of Theorem 1 to show that

$$I_p \leq A\varepsilon_p \big| \log \varepsilon_p \big|^{1/p}$$

in all L^p-spaces, and with no restrictions on $\lambda_1, \lambda_2, \dots, \lambda_n$.

2. Approximation to differentiable functions

A second theorem of Jackson [4, p. 12] states that for any $f \in C^1[0, 1]$ there exists an N-th degree polynomial P_N such that

$$\|f - P_N\|_{\infty} \leq AW(f'; 1/N)/N.$$

Stated equivalently in terms of certain basic functions $f \in C^1[0, 1]$ with $|f''| \leq 1$, the theorem asserts that there exists P_N such that $||f - P_N|| \leq A/N^2$. Corresponding results hold for functions in $C^j[0, 1]$, $(1/N^2$ is replaced by $1/N^{j+1}$), and in all the *L*^p-spaces as well. We wish to generalize these theorems in the direction of Muntz-approximation that is, we will prove

THEOREM 2. Let ε_p be as before and assume the hypothesis of Theorem 1 is satisfied. Furthermore, supplement Λ to include the monomials x, x^2, \dots, x^j . Then for any j-times differentiable $f \in L^p[0, 1]$, there exists P_{Λ} such that

$$\|f - P_{\Lambda}\|_{p} \leq A \varepsilon_{p}^{j} W_{p}(f; \varepsilon_{p}).$$

REMARKS. To simplify notation, we will deal with the case j = 1 although the method generalizes easily. Also, we will confine ourselves to differentiable functions such that $|f''|_p \leq 1$. We then seek to demonstrate the existence of a function P_{Λ} such that

$$\|f - P_{\Lambda}\|_{p} \leq A\varepsilon_{p}^{2}$$

(the reduction to this special case and a proof under the hypotheses $\lambda_m \ge 2m$, $p \ge 2$ are contained in [1]).

PROOF OF THEOREM 2. We first use Jackson's method to approximate f by an *N*-th degree polynomial. Since $|f''|_p \leq 1$, by (3) we can find Q_N s.t.

$$||f' - Q'_N||_p \leq 1/N$$
 with $|Q''_N| \leq N^{1/p}$.

But then $N(f - Q_N)$ has a bounded derivative (L^p) and we can find R_N s.t.

$$\|N(f-Q_N)-R_N\|_p\leq \frac{1}{N}$$
 with $|R'_N|\leq N^{1/p}$.

Taking $P_N = Q_N + R_N/N$, we have

$$\left\|f-P_{N}\right\| \leq 1/N^{2}.$$

Also if $P_N(x) = \sum a_k x^k$, $|a_k| \leq A N^{k-2+1/p}/k!$ for $k \geq 2$.

This follows from the two inequalities $|Q_N''| \leq N^{1/p}$ and $|R_N'/N| \leq N^{-1+1/p}$ and (4).

Once again, reapproximating $P_N(x)$ by $P_{\Lambda}(x) = \sum a_k Q_k(x)$ where Q_k is the best Λ -approximator to x^k , we obtain by Lemma 3

$$\begin{split} \left\| f - P_{\Lambda} \right\| &\leq \left\| f - P_{N} \right\| + \left\| P_{N} - P_{\Lambda} \right\| \\ &\leq A/N^{2} + \sum_{k=2}^{\infty} N^{k-2+1/p} B^{k+1} (k+1)^{k+1} \varepsilon_{p}^{k+1/p} / k!. \end{split}$$

Choosing $N = 1/6 B\varepsilon_p$ as before we obtain

$$\left\|f-P_{\Lambda}\right\| \leq C\varepsilon_{p}^{2}$$

and the proof is complete.

3. Lower Bounds

THEOREM 3. There exists a function $f \in L^p[0,1]$ such that $d_p(f,\Lambda) \ge A$ $W_p(f; \varepsilon_p)$ where A is an absolute positive constant (independent of f and Λ) if either $2 \le p \le \infty$ or $1 \le p < 2$ and $\lambda_k \ge 2k$ for all k.

PROOF. First assume $2 \le p \le \infty$. Our proof is based on some ideas and results from [1, 6]. Let $I_p = \sup_{\|f'\|_p \le 1} d_p(f, \Lambda)$, then I_p has a useful representation

(5)
$$I_p = \sup_{g \in L^q[0,1]} \|G\|_q / \|g\|_q$$
 where $g \perp P_\Lambda$ and $G(x) = \int_0^{\infty} g(t) dt$.

Given $g \in L^q[0,1]$ such that $g \perp P_{\Lambda}$ set

$$F(z) = \int_0^1 t^{z-1/p} g(t) dt.$$

Then F(z) is analytic for Re z > 0 and vanishes for $z = \lambda_i + 1/p$ $i = 0, 1, \dots, n$. Also integration by parts yields

$$F(z) = -\left(z - \frac{1}{p}\right) \int_0^1 t^{z - (1/p) - 1} G(t) dt$$

so that

$$\frac{F(z+1)}{z+(1/q)} = - \int_0^1 t^{z-(1/p)} G(t) dt \, .$$

Following [1, p. 451] we make a change of variable to obtain

$$F(z) = \int_0^\infty e^{-zt} h(t) dt$$

and

Vol. 15, 1973 GENERALIZED POLYNOMIAL APPROXIMATION

$$\frac{F(z+1)}{z+(1/q)} = \int_0^\infty e^{-zt} H(t) dt$$

where $h(t) = g(e^{-t})e^{-t/q}$ and $H(t) = G(e^{-t})e^{-t/q}$ so that $||h||_q$ on $[0, \infty) = ||g||_q$ on [0, 1] and $||H||_q$ on $[0, \infty) = ||G||_q$ on [0, 1]. Since

$$\frac{F(iy+1)}{iy+(1/q)}$$

is the Fourier transform of H(t) it follows by Young's inequality that

(6)
$$\left\|\frac{F(iy+1)}{iy+(1/q)}\right\|_{p} \leq (2\Pi)^{1/p} \left\|H\right\|_{q}.$$

Now F(z) may be factorized into $F(z) = B_p(z)A(z)$ where $B_p(z)$ is the Blaschke product vanishing at $z = \lambda_i + 1/p$ $i = 0, 1, \dots, n$ and A(z) is analytic in the right half-plane. Hence

(7)
$$\left\|\frac{F(iy+1)}{iy+(1/q)}\right\|_{p} = \left(\int_{-\infty}^{\infty} |A(iy+1)|^{p} L(y)^{p/2} dy\right)^{1/p}$$

where

$$L(y) = \frac{1}{y^2 + \frac{1}{q^2}} \prod_{i=0}^{n} \frac{y^2 + \left(\lambda_i - 1 + \frac{1}{p}\right)^2}{y^2 + \left(\lambda_i + 1 + \frac{1}{p}\right)^2},$$

and we will use this to estimate

$$\left\|\frac{F(iy+1)}{iy+(1/q)}\right\|_{\mu}$$

from below. We do this in much the same way as [7]. Let $\gamma_i = \lambda_i + 1/p$ $i = 0, \dots, n$. Then for $y \ge 0$

(8)
$$\frac{L'(y)}{L(y)} = \sum_{i=0}^{n} \left[\frac{2y}{y^{2} + (\gamma_{i} - 1)^{2}} - \frac{2y}{y^{2} + (\gamma_{i} + 1)^{2}} \right] - \frac{2y}{y^{2} + \frac{1}{q^{2}}}$$
$$= 8y \sum_{i=0}^{n} \frac{\gamma_{i}}{\left[y^{2} + (\gamma_{i} - 1)^{2} \right] \left[y^{2} + (\gamma_{i} + 1)^{2} \right]} - \frac{2y}{y^{2} + \frac{1}{q^{2}}}$$
$$\ge -\frac{2y}{y^{2}i + \frac{1}{q^{2}}} \ge -q.$$

345

J. BAK ET AL.

Let $t \ge 0$ be the point where L(y) assumes its maximum and put $M = L(t)^{1/2}$. Then integrating (8) from t to t + u, u > 0, we obtain

$$\log \frac{L(t+u)}{M^2} \ge -qu \text{ or } L(t+u) \ge M^2 e^{-qu}$$

for all u > 0. In particular

(9)
$$L(y) \ge M^2 e^{-q}, \quad t \le y \le t+1.$$

Now choose

$$F(z) = \frac{4z^2 s^2 B_p(z)}{(z+s)^2 (z+1-it)}$$

where $s = \sqrt{1 + t^2}$. This function has been used by Newman [6] for the case $p = \infty$. For this F(z)

$$A(z) = \frac{4z^2s^2}{(z+s)^2(z+1-it)}.$$

From (7) and (9)

$$\begin{split} \left\| \frac{F(iy+1)}{iy+(1/q)} \right\|_{p} &\geq M e^{-q/2} \left(\int_{t}^{t+1} \left(\frac{4\left|1+iy\right|^{2}s^{2}}{\left|1+iy+s\right|^{4}\left|1+iy+1-it\right|} \right)^{p} dy \right)^{1/p} \\ &= M e^{-q/2} \left(\int_{t}^{t+1} \left(\frac{4(1+y^{2})^{2}s^{4}}{\left((1+s)^{2}+y^{2}\right)^{4}(4+(y-t)^{2})} \right)^{p/2} dy \right)^{1/p}. \end{split}$$

Now for $t \leq y \leq t+1$

$$\frac{(1+y^2)s^2}{\left[(1+s)^2+y^2\right]^2} = \frac{(1+y^2)(1+t^2)}{\left[\left(1+\sqrt{1+t^2}\right)^2+y^2\right]^2}$$
$$\geq \frac{(1+t^2)^2}{\left[1+2\sqrt{1+t^2}+1+t^2+(1+t)^2\right]^2}$$
$$\geq \frac{(1+t^2)^2}{\left[6(1+t^2)\right]^2} = \frac{1}{36}.$$

Therefore

(10)
$$\left\|\frac{F(iy+1)}{iy+(1/q)}\right\|_{p} \geq \frac{M}{18}e^{-q/2} \left(\int_{t}^{t+1} \frac{dy}{[4+(y-t)^{2}]^{p/2}}\right)^{1/p}$$
$$= \frac{Me^{-q/2}}{18} \left(\int_{0}^{1} \frac{dy}{(4+y^{2})^{p/2}}\right)^{1/p}$$
$$= CM.$$

Evidently M is equivalent to ε_p thus (6) and (10) imply

(11)
$$\|H\|_q \geq K\varepsilon_p$$

We now find an absolute upper bound for $||h||_q 1 < q < 2$ and once this is done our theorem follows by (5) and (11).

To this end we introduce the following notation of Bak and Newman [1, p. 451]. Denote by $||f||_{A_2}$ the L^q -norm of the inverse Fourier transform of f. Newman [6, (14)] proved that

(12)
$$||F(iy)||_{A_1} \leq 6.$$

Also by Parseval's equality and Newman [6, (12)]

(13)
$$||F(iy)||_{A_2} = \sqrt{2\pi} ||F(iy)||_2$$

= $\sqrt{2\pi} \int_{-\infty}^{\infty} |F(iy)|^2 dy^{1/2}$
 $\leq \sqrt{2}\pi.$

Combining (12) and (13) it follows that $||F(iy)||_{Aq}$ is bounded by an absolute constant for all 1 < q < 2 and this completes the proof for $2 \le p \le \infty$. Thus let us assume $1 \le p < 2$.

Our proof will be based on two lemmas. The first one assures us that the monomial $x^{1-1/p}$ can be approximated (L^p) to within a constant times ε_p by the derivative of some Λ -polynomial.

LEMMA 1. Let
$$\Lambda' = \{x^{\mu_1}, x^{\mu_2}, \dots, x^{\mu_{n-1}}\}$$
 where $\mu_k = \lambda_{k+1} - 1$ then
 $d_p(x^{1-1/p}, \Lambda') \leq A_1 \varepsilon_p$.

PROOF OF LEMMA 1. According to Lemma 3b of Theorem 1,

$$d_{p}(x^{1-1/p}, \Lambda') \leq \prod_{k=1}^{n-1} \left| \frac{\mu_{k} - 1 + 1/p}{\mu_{k} + 1 + 1/p} \right| = \prod_{2}^{n} \frac{\lambda_{k} - 2 + 1/p}{\lambda_{k} + 1/p}$$
$$\leq \exp\left(-2\sum_{k=3}^{n} 1/\lambda_{k}\right) \leq A_{1}\varepsilon_{p}$$

by the left-hand inequality in (2).

Lemma 2. $d_p(x^{2-1/p};\Lambda) \ge A_2 \varepsilon_p^2$.

PROOF OF LEMMA 2. Again, we will use the fact that

$$d_p(f;\Lambda) \ge \Big| \int_0^1 \phi(x) f(x) dx \Big|$$

for any $\phi \in L_q$ such that $\phi \perp \Lambda$ and $\|\phi\|_q \leq 1$.

Choose ϕ so that

$$\int_0^1 \phi(x) x^z dx = \frac{z B_p(z+1/p)}{5(z+2)^3}$$

Since $B_p(\lambda + (1/p)) = 0, \phi \perp \Lambda$. We wish to show $\|\phi\|_q \leq 1$. Note, then, that if we make the transformation $x = e^{-t}$ and set z = iy - 1/p, we have

$$\int_0^\infty \phi(e^{-t})e^{-t/q}e^{-ity}dt = \frac{(iy-1/p)B_p(iy)}{5(iy+2-1/p)^3}$$

so that

$$\phi(e^{-t})e^{-t/q} = \int_{-\infty}^{\infty} \frac{(iy-1/p)B_p(iy)e^{ity}}{5(iy+2-(1/p))^3} dy$$

and by Young's inequality

$$\|\phi(e^{-t})e^{-t/q}\|_q$$
 on $[0,\infty] \leq 1$.

Returning to the unit interval, we have shown that $\|\phi\|_q \leq 1$. Thus

$$d_p(x^{2-1/p};\Lambda) \ge \int_0^1 \phi(x) x^{2-1/p} dx = \frac{\left(2-\frac{1}{p}\right) B_p(2)}{5\left(4-\frac{1}{p}\right)^3}.$$

The proof follows then by noting that by the hypothesis on $\{\lambda_k\}$

$$|B_p(2)| \ge A_1 \exp\left(-4\Sigma \frac{1}{\lambda}\right) \ge A_2 \varepsilon_p^2$$

the latter inequality following from the right-hand inequality in (2).

PROOF OF THOEREM 3. We will exhibit a function f such that

$$||f'||_p \leq 1$$
, while $d_p(f; \Lambda) \geq A\varepsilon_p$.

Choose a_1, a_2, \dots, a_n so that $\sum a_k x^{\lambda_k - 1}$ is the best Λ' approximation to $x^{1 - 1/p}$ and let

$$f(x) = \left[x^{2-1/p} - \sum \frac{(2-1/p)a_k}{\lambda_k} x^{\lambda_k}\right] / 2A_1 \varepsilon_p.$$

By Lemma 1,

Vol. 15, 1973

while on the other hand

$$d_p(f;\Lambda) = d_p\left(\frac{x^{2-(1/p)}}{2A_1\varepsilon_p};\Lambda\right) \ge \frac{A_2}{2A_1}\varepsilon_p$$

by Lemma 2, and the proof is complete.

REFERENCES

1. J. Bak and D. J. Newman, Müntz-Jackson theorems in L^p and C, Amer. J. Math. 154 (1972), 437-457.

2. J. Bak and D. J. Newman, *Müntz-Jackson theorems in* L^p , p < 2, J. Approximation Theory, to appear.

3. T. Ganelius and S. Westlund, Degree of approximation in Müntz's theorem, Proc. Int. Conf. on Math. Anal., Jyväskylä, Finland, 1970.

4. D. Jackson, *The Theory of Appromixation*, A. M. S. Colloquium Pubs., Vol. XI, New York, 1930.

5. D. Leviatan, On the Jackson-Müntz theorem, J. Approximation Theory, to appear.

6. D. J. Newman, A general Müntz-Jackson theorem, Amer. J. Math., to appear.

7. D. J. Newman, *Müntz-Jackson Theorem in* L^2 , J. Approximation Theory, to appear.

8. A. F. Timan, *Theory of Approximation of Functions of a Real Variable*, Pergamon Press, New York, 1963.

9. M. Von Golitschek, Erweiterung der Approximationssatze von Jackson im Sinne von Ch. Müntz II, J. Approximation Theory 3 (1970), 72-85.

10. A. Zygmund, Trigonometrical Series, Monografje Mathematyczne, Tom V, Warszawa-Lwow, 1935.

CITY COLLEGE OF NEW YORK

NEW YORK, U. S. A.

TEL AVIV UNIVERSITY

Tel Aviv, Israel

AND

YESHIVA UNIVERSITY

New York, U. S. A.

349